티스토리 뷰
건축구조기술사로부터 듣는 합격노하우 #07
〈계기 II : 구조기술사 수학이 필수다?〉
: 건축구조기술사나 토목구조기술사는 필기시험에서 계산문제가 상당한 비중을 차지하지요?
네. :
1교시 서술형 문제인 경우 전체 13문항 중, 간단한 계산을 요하는 문제가 0~3문항 정도 출제되고, :
2~4교시 계산형 문제인 경우 각 교시 6문항 중, 계산을 요하는 문제가 3~6문항 정도 출제됩니다. :
: 계산형 문제를 풀려면 고도의 수학적 지식이 필요하겠군요.
정확하게 역학적 지식이 필요하고, 이것을 수학적 방법으로 전개하는 요령이 필요합니다. :
건축공학이나 토목공학을 전공한 분들도 '역학'을 글자 그대로 '힘의 공학'으로 알고 있는데, :
사실은 힘보다는 '변형의 공학'에 더 가깝습니다. :
서양에서는 '역학'을 'Dynamics'라 부릅니다. :
움직임, 움직인 결과, 즉 변형을 먼저 생각하면, 그 원인이 되는 힘을 좀 더 쉽게 밝힐 수 있습니다. :
: 그러면 어느정도의 수학 수준이 필요한가요?
기본적인 하중~전단력~휨모멘트~처짐각~처짐 관계를 이해하기 위해서 미적분을 할 수 있어야 합니다. :
역학에서 자주 출제되는 연성도법의 모멘트면적법, 탄성하중법, 공액보법, 가상일법 등을 이해하고 :
풀 수 있으려면 미적분을 이해해야 하고, :
역시 연성도법의 최소일법, 카스틸리아노 제2정리를 위해서 편미분에 대한 이해가 필요하며, :
연성도법의 3연모멘트법과 강성도법의 처짐각법을 풀려면 연립방정식을 세우고 풀 수 있는 수준이면 됩니다. :
이러한 연성도법도 행렬(Matrix)로 풀 수는 있지만, :
3×3 Matrix 이상을 직접 손으로 풀기에는 시험시간이 상당히 부족하고, 오류가 발생하기도 쉽습니다. :
Matrix는 변위법 또는 응력법에서 어떻게 전개하는지에 대한 이해만 있으면 충분할 것입니다. :
오히려 철근콘크리트나 강구조는 이보다 더 낮은 수학적 도구만으로 풀이가 가능합니다. :
철근콘크리트에서는 그나마 높은 수학이래야, 소요철근비를 산정하는데에 2차방정식의 '근의 공식' 정도, :
강구조에서는 오히려 이마져도 필요가 없습니다. :
다만, 철근콘크리트나 강구조에서의 공식들은 대부분 실험적 결과에 따라 회귀분석을 통해 만들어진 것들이 대부분이고, :
또 공식이나 재료별 역학적 접근개념이 진화하여 변하므로, 무작정 외워둬야 하는 공식들이 많습니다. :
확률에 대해서는 표준편차에 대한 개념만 안다면 한계상태설계법의 신뢰도지수를 이해하는데 큰 도움이 됩니다. :
: 결국 고도한 수학 수준이 필요하다는 말씀이군요?
고등학교 수학 전과정에 대한 보편적인 수준의 이해가 필요하고, 몇몇 챕터(미적분 및 기타)는 필수입니다. :
시험을 위해서는 더도말고 덜도말고 딱 이정도 수준입니다. :
그러니 처음부터 크게 겁먹을 필요는 없습니다. :
: 대부분의 사람들이 구조기술사라면 고도의 수학능력을 가져야 한다고 알고 있는데요?
앞서 말씀드렸듯이, 수학은 역학을 이해하고 해석하기 위한 도구에 불과합니다. :
쉽게 '정글의 법칙'을 예를 들겠습니다. :
습한 지역에서 나뭇가지(재료)들이 무수히 많이 있고, 제작진이 망치와 톱과 드라이버 같은 도구들을 제공하는 경우와, :
제공하지 않고 빼앗는 경우가 있습니다. :
김병만씨는 먼저 땅에서 떨어진 오두막같은 집을 지어야 한다고 생각하고, 평소에 생각하고 관찰한 대로, :
집을 만듭니다. :
집을 어떻게 만들면 되는지, 머릿속으로 그려낼 수 있는 능력이 '역학'입니다. :
다만, 아무리 김병만씨라도 도구만 있으면 쉽게 지을 수 있는 집인데, 도구가 없으면 더 많은 힘과 시간이 듭니다. :
이 도구들이 '수학'입니다. :
그러나 신참이라면 아무리 훌륭한 도구를 주더라도, 머릿속으로 건물을 어떻게 지어야 할지 감이 안 옵니다. :
즉, 수학능력이 아무리 높아도, 역학에 대한 이해나 경험이 없다면 이를 구조에 제대로 활용할 수 없습니다. :
그러나 역학적 감각만 있다면, 어떠한 도구로도 집(구조해석 및 구조설계)은 만들 수 있습니다. :
다만, 훌륭한 도구를 사용해 본 경험이나 작동원리를 제대로 이해만 한다면 더 쉽고 빠르게 지을 수 있지요. :
역학과 수학의 관계를 조금은 무리지만, 제가 평소에 좋아하는 '정글의 법칙'으로 예를 들어 보았습니다. :
: 어느정도의 수학능력이 필요한지 말씀해 주신다면요?
그것은 스스로에게 달려 있습니다. :
구조기술사 시험을 보시겠다는 분들이라면 대개 건축공학과나 토목공학과 출신일 것이고, :
제가 그러했던 것처럼, 망치에 쇠머리는 남아 있고 나무자루는 삭아 없어진 상태일텐데, :
굳이 망치 전체(고등 또는 대학과정 수학 전체)를 다시 만들(복습할) 필요가 있겠습니까?, :
나무 자루만 바꿔 끼우면 되지요. 어쩌면 옛날 내가 쓰던 자루보다 더 긴 자루를 만들 필요도 있겠구요. :
얼마나 더 긴 또는 얼마나 더 튼튼한 자루를 끼울지는, 그 망치로 무엇을 쳐낼지 그 대상을 미리 알아야 하구요. :
그러려면 기출문제를 살펴봐야겠죠. :
〈다음 '필기시험 준비 I편'에서 계속됩니다.〉
'구조상식' 카테고리의 다른 글
건축구조기술사로부터 듣는 합격노하우 #09 (8) | 2018.12.17 |
---|---|
건축구조기술사로부터 듣는 합격노하우 #08 (6) | 2018.09.12 |
건축구조기술사로부터 듣는 합격노하우 #06 (11) | 2018.08.29 |
건축구조기술사로부터 듣는 합격노하우 #05 (32) | 2018.08.24 |
건축구조기술사로부터 듣는 합격노하우 #04 (0) | 2018.08.16 |
건물지진규모분석연구서비스(주)
e-mail : bmtars@nate.com
IN KOREA
CALL : 1833-9875
FAX : 0505-300-9875
OUT OF KOREA
CALL : 82-1833-9875
FAX : 82-505-300-9875
- Total
- Today
- Yesterday